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Abstract

The main results of the paper are two dual algorithms bijectively mapping the set of spanning trees
with internal activity 1 and external activity O of an ordered graph onto the set of acyclic orientations
with adjacentunique source and sink. More generally, these algorithms extend to an activity-preserving
correspondence between spanning trees and orientations. For certain linear orderings of the edges,
they also provide a bijection between spanning trees with external activity 0 and acyclic orientations
with a given unique sink. This construction uses notably an active decomposition for orientations of
a graph which extends the notion of components for acyclic orientations with unique given sink.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Tutte polynomial (G; x, y) of agraphGis a two variable polynomial equivalent, up
to simple algebraic transformations, to the generating function of cardinality and number of
connected components of subsets of edg€a dfumerous important numerical invariants
of G such as the numbers of spanning treesg-oblorings, of acyclic orientations @,
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etc. are evaluations ofG; x, y). We refer the reader §@] for a comprehensive survey of
properties and applications of Tutte polynomials of graphs, and, more generally, matroids.
Suppose the edge-set@fis linearly ordered. Tuttfl 7] has shown

1(Gix,y) :Z tijx' 7,

iJ

wherey; ; is the number of spanning trees Gfsuch thati edges are smallest in their
fundamental cocycle arjeedges are smallest in their fundamental cycle. On the other hand,
Las Vergnag14] has shown that

t(G;x,y)= Z Oi,jziiijxiyj,
iJ

whereo; ; is the number of orientations & such that edges are smallest in some directed
cocycle and edges are smallestin some directed cycle. This last formula generalizes a well-
known result of Stanlef16]: the number of acyclic orientations Gfis equal ta (G; 2, 0).

Note that this result is a special case of counting theorems in hyperplane arrangements resp.
oriented matroids due to Windgr9], Zaslavsky[23] resp. Las Vergna4].

Comparing these two expressions fgG; x, y) we geto; ; = 2t/ ; for all i, j. A
natural question arises of a bijective proof for this form{l4]. The problem is to define
a correspondence between spanning trees and orientations, preserving paré@mpters
calledactivitiesin the literature, and compatible with the above formula. More precisely,
the desired correspondence should associate witti, gn-active spanning tree o6, a
set of 2t/ (i, j)-active orientations o, in such a way that each orientation®fis the
image of a unique spanning tree. The main object of the present paper is to describe such a
correspondence, called here tetive tree-orientation correspondence

Spanning trees and orientations with, 0) activities—or, dually,(0, 1) activities—
constitute the main case of our construction. Several papers of the literature deal with
(1, 0)-orientations of graphs, i.e. acyclic orientations with adjacent unique source and sink.
Enumerations of1, 0)-orientations are studied by Greene and Zaslay$Ry for graphs,
zonotopes and hyperplane arrangements. In particular, they prove that the number of acyclic
orientations of a graph with adjacent unique source and sink(6 2 wherefi(G) = t1,0.
Equivalently, we haves o = 21 ¢ (implying that this number does not depend on the par-
ticular source and sink). If6] bijective proofs are given of a result §f2] on acyclic
orientations with unique sink (see below, and Section 6). Orientationg Wi€h activities
are studied irf5] for their relevance in several graph algorithms. On the other hand, the
external activity of a spanning tree has recently retained some attention in relation with the
chip-firing game and the sandpile mo(i&] (see alsq1] for the particular case of,, and
parking functions).

Section 3 contains the main results. Two dual algorithms establish a bijection between
spanning trees and orientations with 0) activities. In Section 4, we obtain as a corollary, a
bijection for(0, 1) activities. In Section 5, these bijections are extended to a correspondence
between spanning trees and orientations consistent with the foempta 2/*/¢; ;, thus
answering the above question. We point out that this correspondence not only preserves
activities but also active elements. The construction uses reductions from general activities
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to the (1, 0) case. In Section 6, we show that the correspondence of Section 5 produces a
bijection between internal spanning trees and acyclic orientations with a unique sink at a
given vertex.

A bijection between acyclic orientations with a unique fixed sink and internal spanning
trees has recently appearedh. We observe that this bijection is not activity-preserving,
whereas the bijection in Section 6 is activity-preserving. The correspondence of Section 3
answers a question ¢6] (see (a) p. 145). Several years ago, one of the present authors
defined in an extended abstrggéb]—not quoted in[6]—a different activity-preserving
correspondence between spanning trees and orientations in graphs. This correspondence
may probably not be generalized beyond regular matroids. The present one generalizes in
a natural way to any oriented matrditil]. The main results have been presented in the
Ph.D. Thesi$7]. Some particular cases are studiefBij10] (see als¢9] for a survey). The
graphical case is the object of the present paper (extended from FPSACO02 Proceedings). In
this case, interesting specific properties involving vertices can be established (see Sections
6 and 7). An enumeration of acyclic orientations with a unique sink in a graph, constructed
from a linear ordering of the vertices, and involving the coefficients of the chromatic poly-
nomial, has been described by L§E3], linked to constructions by Vienn{i8], P. Cartier,

D. Foata, and I. Gessel (sg8]). This construction appears in Section 7 to be a particular
case of the present one: for a linear ordering of the edges compatible with the ordering of
the vertices, we obtain the same partition for acyclic orientations with unique given sink.

Our point of view is matroidal: the correspondence depends on a linear ordering of the
edges and the cycle—cocycle duality allows, for instance, to consider all orientations—not
only the acyclic ones.

2. Notation and terminology

The present paper deals exclusively with graphs. We point out that definitions and results
of this section have extensions to matroids and oriented matroids. Throughout the paper, if no
confusion results, we will implicitly assume that graphs under consideration are connected,
and that cycles and cocycles alementan(i.e. minimal for inclusion). Graphs considered
in the paper may have loops or multiple edges.

Let G be a graph with edge-s& and7T C E be a spanning tree @. Fore € E\T,
we denote byC(T; ¢) the fundamental cyclef e with respect tdl, i.e. the unique cycle
contained inT U {e}, obtained from the unique path @fjoining the two vertices ot.

Fore € T, we denote bYC*(T; e) thefundamental cocyclef e with respect tdr, i.e. the
unique cocycle contained ifE\T) U {e}. The cocycleC*(T; e) is the set of edges b
joining the two connected componentsiof{e}. Fore € E\T and f € T, we have clearly
feC(T;e)ifandonlyife € C*(T; f), and thenC(T; e) N C*(T; f) = e, f}.

We say that a grapls is orderedif its edge-sefE is linearly ordered. The notion of
activities of a spanning tred in an ordered grapls is due to Tuttg17]. Theinternal
activity 1(T') is the number of edgese T smallest in their fundamental cocyd® (T'; e),
and theexternal activity:(7) is the number of edgese E\T smallest in their fundamental
cycleC(T; e). We denote by; ;(G), or simplyz; ;, the number of spanning trees®kuch
that(T) =i ande(T) = j.
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The Tutte polynomial (G; x, y) has been introduced by Tutf&7], under the name
dichromateto generalize in a self-dual way the chromatic polynomial of a g@ph(V, E),
as

HGix, ) = 3 (x = DBy _ )lAI=IVIre),
ACE

wherec(A) denotes the number of connected components of the giaph) for A C E
(counting each isolated vertex for one component). Then, in order to give a combinatorial
interpretation of the coefficients, Tutte has shown, by deletion/contraction of the greatest
element, that

1(Gyx,y)= Z fi,jx' y7.
i,j<0

This formula implies that; ; does not depend on the linear ordering.

Acycleresp. cocycle in adirected grapligectedf allits edges are directed consistently.
The (primal) orientation activityof an ordered directed grajih or O-activity, denoted by
0(G), is the number of edges smallest in some directed cycledlibkorientation activity
of G, or O*-activity, denoted by*(G), is the number of edges smallest in some directed
cocycle. We denote by; ; (G) the number of orientation§ of G such thab*(ﬁ) =i and
o(ﬁ) = j. The definitions ofD>- and O *-activities have been introduced[it¥] in view of
the formula

t(G;x,y)= Z 0;, ;27 xiyl,
i

This formula implies thab; ; does not depend on the ordering, and thgt= 21/ ;.
The proof in[14] is by deletion/contraction of the greatest edge.

Internal and external activities of spanning trees, and also the two types of orientation
activities, are dual notions from the point of view of graph dualityGlis a planar graph
imbedded in the plane, ar@* is a dual ofG, we haveeg+(T) =16 (E\T). If Gis directed,

a directed dualof G is a planar dualG* directed such that all directions of correspond-
ing edges iG andG* define rotations of the same type, clockwise or counterclockwise.
Then, we have*(G) = o(G*). The graphG is said to beacyclicif there is no directed
cycle, i.e. ifo(G) = 0, and, dually, is said to bwtally cyclic (or strongly connected

if 0*(G) =0.

In a directed graph, given an elementary cy€land a direction along, we defineC*
as the set of edges & directed consistently with the direction aloy andC~ as the
set of edges directed in the opposite direction. An elementary cobyisléhe set of edges
joining two subsets partitioning the vertex-set@fnto two connected subgraphs. Given
an elementary cocycle and a direction between the two subsets of the partition induced
by D onV, we defineD™ as the set of edges & directed consistently with this direction
between subsets, afal~ as the set of edges directed in the opposite direction. In a directed
graph, the notatiol’ (T; e) for e € E\T resp.C*(T; e) for e € T can be made precise by
choosing the cycle direction resp. cocycle direction consistent with the directign.ef
such thaeis in the positive part.
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We make a crucial use in the proof of Theorem 4 (Step 9) of the (diregraghical
orthogonality propertyyCT* N D¥|+ |C~ N D~ | =|C~ N DY|+ |CT N D~| between a
cycleC and a cocycl®. In all other places, the weaker (directes)hogonality property
CND #@Pimpliess(CTNDYHYU(C NDT) #Pand(C-NDHYUCTNDT) £
suffices for our purpose. A more general proof for Theorem 4 using only this last orthogo-
nality property is made ifiL1] (see alsq7]). We mention that the graphical orthogonality
property characterizes regular matrdja8], whereas the orthogonality property character-
izes oriented matroid®1]. See for instancf?] for generalization of the Tutte polynomial
in matroids.

3. The bijection for (1, 0)-activities
We recall that1 o(G) # 0 if and only if the graplG is 2-connected and has no |of&).

Proposition 1. Let G be an ordered directed graphith smallest edge; = s's” directed
froms’ to s”. Theno*(G) = L ando(G) = 0 if and only if G is acyclicwith unique source
s” and unique sink”.

Proof. A directed graph has orientation activity O if and only if it is acyclic by definition.

In an acyclic graphe; belongs to a cocycle, so it is the smallest element of a cocycle. An
acyclic graph has a source (otherwise one could construct easily a directed cycle). The set
of edges having this source as an extremity is then a directed cocycle.

If the graph has dual activity 1 then this source must be an extremity (@fecause;
is the only possible minimal element of a cocycle). The same properties holding for the
opposite orientation, the graph has a sink and any sink must be an extreraityTdfis
proves that the graph has unique sourcand unique sink”.

Conversely, suppogg has a unique sourcé and a unique sink”. The two connected
subgraphs induced by the partition\otlefined by a cocycle are also acyclic. Hence, they
must have a source and a sink. If the cocycle is directed, there exist a soda ohe
component and a sink & in the other. Necessarily these two verticessai@nds”, and so
e1 belongs to the directed cocycle[d

Proposition 2. Let G be a loopless ordered graph with edge-set Eang Min(E), and
letT beaspanningtreeof G. Set{b1 < by <--- < b, }andE\T={a1 <az <--- <an—_,}.

(i) e(T)=0ifand only ifp; = Min(E\UKkj C*(T;by))forj=12,...,r.
(i) (T)=1ifandonlyifa; = Min((E\{el})\UKkj C(T;a;))forj=21,2,...,n—r.

Proof. (i) Lete = Min(E\UKRj C*(T; b;)), and suppose < b;. We havee ¢ T, since
e¢{by,...,bj_1} by definition. SetC = C(T;e). If b; € C, we havee € C*(T; b;),
thereforeC N {by, ..., b;_1} = 9. Itfollows thatC N T < {b;, ..., b,}, thene = Min C,
hences(T) > 0.

Conversely, suppogg = Min(E\UKij*(T; bp))forj=1,2,...,r.Lete € E\T.
SetC=C(T;e),andleth; =Min CNT.We haver ¢ U1<i<j C*(T; b;), otherwiseh; € C
for somei < j. Henceb; < e, andeis not externally active.
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(i) Let e = Min((E\{el})\Ulgkj C(T; a;)), and suppose <a;. We havee € T,
sincee ¢ {a1, ..., aj_1} by definition. SetD = C*(T; e). If a; € D, we havee € C(T'; a;),
thereforeD N {ay, ..., aj_1} = @. It follows that D N (E\T) < {aj,...,a,—r}, then
e=Min D, hencel(T) > 1.

Conversely, supposg = Min((E\{el})\UKkj C(T;a;))forj=1,2,...,n—r.Let
e € T\{e1}. SetD = C*(T;e), and leta; = Min D\T. We havee ¢ U1<i<j C(T; ap),
otherwises; € D for somei < j. Henceu; < e, andeis not internally active. [

The following proposition defines the active correspondenceélfd)-activities.

Proposition 3. Let G be an ordered graphvith edge-seE = {e1 =s's" <ex < --- < ¢,},
and T be a spanning tree of G with internal activitpnd external activity). The following
two algorithms produce the same acyclic orientation pih unique source’ and unique
sinks”.

StepO (in both algorithm$: direct the smallest edgg froms’ tos”.

Algorithm 1. Let E\T ={a1=ex <az <---<dan_,}.

Stepi = 1, 2,...,n — r: direct the undirected edges 6f(T’; ;) in the cycle direction
opposite to the direction of its smallest edge

Algorithm 2. LetT ={b1 =e1<by<---<b,}.

Stepl: direct all edges# eq of C*(T'; b1) in the cocycle direction defined lay.

Step=2, ..., r:directthe undirected edges@f (T'; b;) inthe cocycle direction opposite
to the direction of its smallest edge

An example for Algorithms 1 and 2 applied to the 4-wh8glis given inFig. 1

Proof of Proposition 3. SinceG has a spanning tre€ with (1, 0) activities, it has no
isthmus or loop.

(1) Algorithm1 directs all edges of Gand (1") Algorithm 2 directs all edges of G

We show inductively that all edges (0,  ;; C(T'; a;) are directed by Algorithm 1
fori =1,2,...,n —r. We have to check that before Steive edgeh = Min C(T'; ;) is
directed. This is clear far=1 since theb =¢1, SO suppose> 2. We haveh € T, otherwise
b = a; would be externally active. b = e, theng; is directed at Stepof Algorithm 1. If
b # e1, thenb is not the smallest element of its fundamental cocycle sititg= 1. Set
aj =Min C*(T; b). We haven; < b < a;, hences; is directed before Steipby induction.
Sinceb € C(T'; a;), the edgéd has been directed by Algorithm 1 at a St€p < i, hence;
is directed at Step On the other hand, sin€@has no isthmus, we havyg; C(T'; a;) = E,
hence all edges @ are directed by Algorithm 1.

The proof of(1") is dual.

(2) Algorithmsl and2 produce the same orientation of G
The proof is by induction on the rank in the ordering. leete E\T, and seth =

Min C(T; a), a’ = Min C*(T; b). We haveb € T, otherwiseb = a is externally active,
contradictings(7) = 0. The first case i8’ € T. Then the edgé = «' is internally active,
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3
4 1
6 2
7 5
8
T=1457
3 3 3
4 1 4 1 4 1
6 2 6 2 6 2
7 g 5 7 g 5 7 5 5
1.1) 1.2) (1.3)
3 3 3
4 1 4 1 4 1
6 2 6 2 6 2
7 g 5 7 g 5 7 g 5
(2.1) 2.2) 2.3)
3
4 1
6 2
7
o 5
(1.4) = (2.4)

Fig. 1. Two dual algorithms fof1, 0) activities.

henceb = e1 sincei(T) = 1. In this case ande; have opposite directions i6i(T; a) for
Algorithm 1. We haver € C*(T'; e1). Orthogonality implies must have the same direction
in C*(T; e1) ase1. This is the direction it is given in Step 1 of Algorithm 2. The second case
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isa’ € E\T, and thush # e1. We haven € C*(T'; b) anda’ < b < a. By Algorithm 1, the
edged anda have opposite directions ié(7'; a). We haveC (T; a) N C*(T; b) = {a, b},
hence by orthogonalitg andb have the same direction i6i*(7T'; b). As b is the smallest
edge inT suchthau € C*(T'; b), it follows thatais undirected whehb s directed by Algo-
rithm 2. Thereforea andb have the same direction {@i*(7'; b) for Algorithm 2, opposite
to the direction ofz’. Since by induction, the directions bfagree in Algorithms 1 and 2,
the same conclusion holds far

The proof forb € T is similar and left to the reader.

Let G be the orientation o6 constructed by Algorithms 1 and 2.

(3) 0*(G)=1and(3) o(G) =0.

Suppose there is a directed cocyblén G with Min D # eq, contradicting (3). Since
G has no isthmus, we ha\g; C(T'; a;) = E. Leti be the smallest integer such that
C(T;a;) #@.Letb € DN C(T; a;j)\{a;}. Sinceb € C(T; a;)\{a;}, we haveb € T. By
the choice of, the edgeb is directed at stepof Algorithm 1. Sete = Min C(T'; a;). We
havee # a; otherwises; would be externally active, contradictirgl’) = 0. If i = 1, we
havea; = e2 ande = e1, SOe # b according to our assumption. =2 then, by (1), the
edgee is directed before Stejpof Algorithm 1 and sincé is not we haver # b. Hence,
for anyi, by definition of Algorithm 1, bottb anda; are directed in the same direction of
C(T; a;), opposite to the direction @& It follows that all edges iD N C(T'; a;) have the
same direction in bot® andC(T'; a;), contradicting orthogonality.

Suppose there is a directed cy€ldan E), contradicting(3'). SinceG has no loop, we
havel J; C*(T; b;) = E. Leti be the smallest integer such th@ain C*(T'; b;) # ¥. Let
a € CNC*(T; b;)\{b;}. By the choice of, the edgea is directed at stepof Algorithm 2.

If i =1, i.e.b1 = e1, thena andb; have the same direction &*(7T'; b;) by definition of
Step 1 of Algorithm 2. Suppose= 2. Sete =Min C*(T'; b;). By (1), the edgeis directed
after Stepi — 1 of Algorithm 2 and sincea is not, we havee # a. On the other hand,
e # b; otherwiseb; would be internally active, implying = 1 since:(T) = 1. Hence, by
definition of Step > 2 in Algorithm 2, botha andb; are directed in the same direction of
C*(T; b;), opposite to the direction @& It follows that all edges it N C*(T'; b;) have the
same direction in bot@ andC*(T'; b;), contradicting orthogonality. [

Theorem 4. Let G be an ordered graph. The mapping defined by Algorithasd 2 is a
bijection from the set of spanning trees of G with0) activities onto the set of orientations
of G with (1, 0) activities such that the direction of the first edge is fixed

Proof. Since 210 = 01,0 by [12], it suffices to show that the mapping is injective. Sup-
pose there exist two different spanning trées- {by <b2<--- <b,} andT’ = {b] < - --
<bl} with (1, 0) activities such that Algorithms 1 and 2 produce the same directed
graph.

(1) Letk be the smallest integer such th@t(T"; by) # C*(T'; by). By Proposition 2,
we haveb; = b; for all i <k. Setb = by = by, D =C*(T; b) andD’ = C*(T’; b). We have
beDtND*.
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@TnD c{b=bi,....b},and(2)T'ND C{b=b;,...,b.}.If i <k, by (1) we
haveb; =b. ¢ C*(T'; by) = D'.

QR)TNnD cDT,and@)T'ND C D*.

Leth; € T N D'. By (2), we have >k. If i =k, thenb; = b, = b, =b € D'". Suppose
i > k. Sinceb; € D' = C*(T'; b)), the edge); is directed at a step<k of Algorithm 2
applied to7”. If j <k, we haveb;. =bj € T, henceb; ¢ C*(T; bj) = C*(T"; b}), so that
b; cannot be directed at St¢p

Thereforej = k. If k > 1, the edge$ = b; andb; are directed by Algorithm 2 in the
same cocycle direction ab’ (opposite to the direction of the smallest edgeDdf, hence
b; € D'".If k =1, then, by definition of Step 1 in Algorithm 2, we haé= D'

(4)|IT N D'|>2and@) |T' N D|>2.

SinceT is a spanning tree ard’ a cocycle, we have N D’| > 1. If [ITND'|=1, thenD’ is
a fundamental cocycle @f and necessarily, sinée=b; € T, we haveD’=C*(T; b)=D,
contradicting the definition df. ThereforgT N D’| > 2.

(5) Leta be the smallest element of the set

U cadouv | ca@so,

ec(TND)\{b} ec(T'ND)\ (b}

which is not empty by (4). By symmetry, we may suppose t¢hatMin C*(T; e) for some
e € (T N D)\{b}. We havee = b, for somef > k by (2). In particular > 1.

(6)a¢ T.Ifa e T,thena=eanda=Min C*(T; a) isinternally active. Hence=e1=b1,
contradicting? > 1 (5).

SetC =C(T; a).

(7)a ¢ T'. Supposer € T'. We havea > b by (6). Ifa € D, we haven € (T’ N D)\{b},
hencex <Min C*(T’; a) by (5). Thereforais internally active, hence=e1, contradicting
(6). Soa ¢ D. Sincea > b, we have alsa ¢ D’.

Letx € C N D'. We havex # b sincea¢ D, andx # a sincea ¢ D’. Therefore,
x € ((C\{a}) N DH\{b} < (T n D"H\{b}. Hencea <Min(C*(T; x)), and in facta =
Min(C*(T; x)) sincex € C=C(T; a) impliesa € C*(T; x). By Algorithm 2 applied tdT,
the edgexis directed in the cocycle direction oppositeatin the cocycleC*(T'; x), hence
by orthogonalitya andx have the same cycle direction @y i.e.x € C*. On the other
hand, we have € D' = C*(T’; bx) andx ¢ C*(T'; b)) = C*(T; b;) for i <k, sincexin
T. Hence, the edgeis directed at Stek of Algorithm 2 applied tol”’. Sincex > by = b,
the edges andx have the same cocycle direction If, i.e.x € D'". It follows that
cnp cctnpt.

By (5), we havea € C*(T;e¢), hencee € C(T;a) = C, and alsce € D’. We have
ecCND andCN D' < Ctn D™, contradicting the orthogonality property.

SetC’ = C(T';a). We haven e CT N C'™.

(8)(CND)\{a,b} € CT N DT and(®) (C' N D)\{a,b} € C'"" N D+.

We haveC\{a} € T, hence(C N D')\{a,b} € TN D' < D' by (3). Letx €
(C N D")\{a, b}. We havex € (T N D")\{b}, hencen <Min C*(T; x) by (5). On the other
handx € C=C(T; a),hencer € C*(T; x). Itfollows thata=Min C*(T'; x). We havex=b;
with i > k. By Algorithm 2 applied tdT, at Step the edgex = b; is directed in the cocycle
direction of C*(T'; x) opposite to the direction ai. Now C(T'; a) N C*(T; x) = {x, a},
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hence by orthogonality the edgeanda have the same cycle direction in the cy€gi.e.
xeCt.

9)CND C{a,byand(9) C'N D C {a, b}.

SupposeC N D'\{a, b} # @. By (8) and graphical orthogonality, we hawves D' or
b € C~,and both hold iffa, b} € C N D'.

Supposez € D'". Thena € C' N D' C {a, b}, hence by orthogonality, we have
C'N D' ={a,b}andb € C'*. By (8) and graphical orthogonality applied @ N D, we
havea € D~.Thena € CND C {a, b}, hence by orthogonality, we ha@ D={a, b} and
b € CT. Thereforda, b} € CN D', botha € D'~ andb € C~ should hold: contradiction.

The casé € C~ is similar, and left to the reader.

(10) By (5), we haver = Min C*(T'; e), with e = b, € (T N D)\ {b} and¢ > k. We have
e € C=C(T;a), hencee € CN (T N DH\{b}) C (CN DH\{b} C {a} by (9). Therefore
a = e. Hencea = Min C*(T'; a), i.e.ais internally active. Then, necessarily= e1 = b1,
sinceT and7"’ have internal activity 1, contradicting= by with £ > 1 (5). O

Note. We point out that theonverse algorithmfrom (1, 0)-active orientations tgl, 0)-

active spanning trees, is more involved. It has been obtained in the geometric and general
context of oriented matroids. A possible construction is by deletion/contraction of the great-
estelemenftl1] (see als§7]). But overall its main definition ifiL 1] is in terms of extensions

of linear programming.

4. The bijection for (0,1)-activities

The case of0, 1)-activities can be reduced ta, 0)-activities by the following Proposi-
tion, whose proof is straightforward.

Proposition 5. Let G be an ordered graph with edge-$et < e .. .}.

(i) If T is a spanning tree witkil, 0) activities thenT\{e1} U {e2} is a spanning tree with
(0, 1) activities. The mapping defined By T'\{e1} U {e2} is a bijection between the sets
of spanning trees of G wittl, 0) resp (0, 1) activities

(ii) If G is an orientation of G with{1, O) orientation activitiesthen the orientation of
denoted—elﬁ, obtained by reversing the direction ef, has(0, 1) orientation activities.
The mapping defined b@) —> —elﬁ is a bijection between the sets of orientations of G
with (1, 0) resp (0, 1) activities

Abijection for(0, 1) activities can be obtained either from the bijection(fpr0) activities
in G by means of Proposition 5, or from the bijection fdr 0) activities in the dual graph
G* whenG is planar (or in the dual oriented matroid in general). It can be shown that these
two bijections are identical, providingsarong duality propertyor the correspondence, see
[11] for details (or alsq7]).
Fig. 2 shows an application of Proposition 5 to the planar grédhconsidered in
Fig. 1 We observe that thé, 1)-orientation associated with the spanning tfee- 2368
is different from the orientation associated with the same tree by the algoritfitBjothe
edge 8 ofl12, Fig. 4]is reversed irFig. 2
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5
8 2
7 1
6 3
4
T=2368

Fig. 2.(0, 1) activities.

5. The general correspondence

In this section, we construct tlaetive(tree-orientation correspondencassociating with
a general spanning tree of activitigs j) a set of 27/ orientations with the same activities,
such that each orientation is the image of a unique spanning tree.

The main content of this section is that the construction of the active correspondence can
be reduced to thél, 0) case by means @aictive partitionsof the edge-set. It turns out that,
contrasting with Sections 3, 4, 6, where specific properties of graphs are used, Section 5
is a mere specialization to graphs of properties holding in matroids and oriented matroids.
In consequence, we will only sketch the main results, and refer the regddj (see also
[7]) for details and proofs.

Active partitions can be described either in terms of spanning trees in an ordered graph,
or of orientations in an ordered directed graph. One main point is that if a spanning tree and
an orientation are related by the active correspondence, then the two definitions produce
the same active partition. The definition of an active partition in terms of spanning trees is
much more involved than its definition in terms of orientations. However, in both cases, the
first step is to separate the two dual types of activities, and the second step is to reduce the
construction tq1, 0) activities.

Let G be an ordered graph with edge-&etandT be a spanning tree @& with activities
(i, j). The first step is to construct a sEtC E whose elements are calledternal Then
E\F isthe set ointernalelements. For the reader’s convenience, we sketch the construction
of F (se€g[4] for more details and proofs).

ForX C E set

fF(X)=XU U C*(T;e)U{e € E| C CE(T;e) C X},
eeTNX

whereC* (T'; e) is the set of elements @ (T'; ¢) strictly smaller thare, and

foo=J fix.

izl
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Letas <--- < a; be the internally active elementsBfand letF = E\f'({al, coai}).

ThenF separates the internal and external activitiesF is a spanning tree witty, 0)
activities of the contractio;/F of G by F, andT N F is a spanning tree witk0, ;)
activities of the subgrapt (F) [4].

Let G be an orientation associated wiltby the active correspondence. By a classical
result of Minty[22], in a directed graph an edge belongs either to a directed cycle or to a
directed cocycle, but not to both. Thénis thetotally cyclic partof ﬁ, i.e. the union of
all directed cycles ofG, and E\F is theacyclic partof G, i.e. the union of all directed
cocycles ofG .

It follows from this first reduction that without loss of generality, we may restrict the
construction ta, 0) or (0, j) activities. Furthermore, internal and external elements, and
also totally cyclic parts and acyclic parts, being related by duality (cycles and cocycles play
dual parts), we may restrict ourselves to spanning trees with external activityinfeioral
spanning trees, and acyclic orientations. The second step reduces the constry@tion to
activities.

For an internal spanning tréewith internally active elements; < --- <a;, for j =
1,2,...,iset

Aj=fdaj.....aiD\fajs1. ... ai}).
Theactive partitionfor T is the partition
E=A1+---+A;.
Set
T;=TNAj,
thenT =Ty + --- + T;. And set
Gi=G/(A1UA2U---UA; D\(Aj11UAj2U---UA),

where, as usud| denotes the deletion, aridlenotes the contraction.

Let G be an acyclic orientation of the ordered gra@hwith o*(ﬁ) =1, and let
a1 <---<a; beitsO*-active edges. Then, fgr=1, 2, ..., i, set
A= |y b U o
D directed cocycle D directed cocycle
Min D=uj Min D>aj

Theactive partitionof G for the orientation is the partition
E=A1+ A2+ + A

Theactivity class of orientationsf G is the set of 2orientations obtained by reversing
all edge directions in the' Zossible unions of some of the;’s. As easily seen, thesé 2
orientations have the same active partition.

Set

G, =G/(AlUAU---UA; D\(Aj11UAj12U---UA).
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3 3 3 3
4 4 1 4 4
6 2 6 2 2 2
7 g 5 7 g 5 7 g 5 7 g8 5
1236 1237 1238 1246
125 34 678 1 25 34678 1 2578 346 134 25 678
3 3 3 3
4 4 4 4
6 2 6 2 2 2
7 g 5 7 8 5 7 g 5 7 g
1248 1267 1268 1356
134 25678 13467 258 1 2345678 125 34 678
3 3 3 3
4 4 4 4
6 2 6 2 2 2
7 8 5 7 8 5 7 8 5 7 8 5
1357 1358 1456 1457
125 34678 12578 346 12345 678 12345678
3 3
4 1 4 1
6 2 6 2
7 8 5 7 8 b5
1458 1468
12345678 12345678

Fig. 3. Active bijections.

Theorem 6. The setd; are spanning trees witlil, 0) orientation activities in the graphs
G onthe edge-setsd;. The graphsﬁ)j on the edge-sets ; have(1, 0) orientation activ-
ities. The number of acyclic orientations with given active partitio® iSmes the number
of spanning trees with same active partition

Using the bijection of Section 3 on each trEefor j =1, 2,...,i, we associate with
eachT; a directed grapfﬁ)j and its opposite with(1, 0) activities. Then lefG be the
directed graph obtained by directing the edge&afith respect to the directions in the
minorsG ;. ThenG has(i, 0) activities. We define the active correspondence by associating
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Gy Gy €]

Fig. 4. Decomposition of an orientation.

the directed graplﬁ with the spanning tre&, and the spanning tréewith all graphs in

the activity class ofG . This active correspondence associates the same spanning tree with
all orientations in an activity class, and moreover preserves active elements and active
partitions.

The proofs of Theorem 6 and all the results mentioned above, and the statements and
proofs of the mixed case, when bdtrand E'\ F are not empty, can be found jhl] (see
also[7]) in the more general context of oriented matroids. We will illustrate its content in
Section 6 on an exampl&igs. 3and4).

The activity classes constitute a partition of the set of orientations of a graph. The active
correspondence inducesaativity preserving bijection between spanning trees and activity
classes of orientations

6. A bijection for acyclic orientations with a unique sink

Greene and Zaslavsk$2] have shown that the number of acyclic orientations of a graph
G with a unique sink at a given vertex is equak{@; 1, 0). Gebhard and Sagd6] give
three bijective proofs of this result. The third d6¢ Theorem 4.1 is by means of an explicit
bijection between acyclic orientations with a given unique sink and internal spanning trees,
as suggested by the relatiofG; 1,0) = ), #; o.

It turns out that the correspondence defined in Section 5 provides another bijection be-
tween internal spanning trees and acyclic orientations with a given unique sink, which
moreover preserves active edges. The internally active edges of an internal tree become
O*-active edges of the orientation.

Lemma 7. In an ordered graphthe smallest edge of any cocycle belongs to the lexico-
graphically smallest spanning tree

Proof. Let G be an ordered graph, afig be its lexicographically smallest spanning tree.
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(1) Lete € To andD be the fundamental cocycle efwith respect talp. Thene s the
smallest element db. Otherwise there ia € D such thatz < e, and the spanning tree
To — e + a is lexicographically smaller thafy.

(2) Conversely, leX be an elementary cocycle & with smallest elemerd. Suppose
a ¢ To. Lete € X N Top, andD be the fundamental cocycle efvith respect tdp. Sinceeis
the smallest element @ by (1), we have: ¢ D. By elimination there is a cocychk¥such
thata € Y € (DU X) — e. Sincea is smallest inX ande smallest inD, we havea smallest
inY. We haveY N Ty € (X N Tp) — e, hencelY N Tyl < | X N Topl. Applying inductively
this property, we obtain that thereXswith X N To = ¢, a contradiction since cocycles and
spanning trees always meet. Heace 7p. [

We say that a spanning tré&en an ordered graph iscreasing with respect to a vertex s
if the edges increase for the ordering along any pathledéginning as.

Proposition 8. Let G be an ordered graph such that the lexicographically smallest spanning
tree is increasing with respect to a vertexTfien there is exactly one acyclic orientation
with a unique sink at s in each activity class of acyclic orientations,afainely the unique
orientation in the class defined by reversing or not all edge directions in subsets of the active
partition in order to obtain that active edges are directed towards §®n

Note that the hypothesis impliess an extremity of the smallest (non loop) edgesof

Proof of Proposition 8. Let Ty denote the lexicographically smallest spanning tree of
G = (V, E). By hypothesidy is increasing with respect ®

(1) The edges of a directddlementarycocycle D defined by 2-partition V =V + V>
in an acyclic orientationG of G with a unique sink at € V1 are directed fromV, to V3.

Since G is acyclic,ﬁ)(vz) contains at least one sink If the edges oD were directed
from V1 to V5, thens” would be a sink of with s # s/, contradicting the uniqueness.

2)If G isan acyclic orientation of G with a unique sink atlsen theO*-active edges
of Tp are directed towards offp.

Let a be aO*-active edge ofG , andD be a directed cocycle with smallest edgeBy
Lemma 7, we have € Tp. SinceTy is increasing and smallest inD, there is no edge of
D on the path offy from sto the closest vertex &. Hence, with notation of (1), this path
is in V1, and by (1)ais directed towards.

(3) Conversely, leG bethe (unique) graphin a given activity class of acyclic orientations
of G such that the)*-active edges of this class are directed towards 7p. The graphﬁ
exists and is unique by the properties stated in Sectid'nné.graphﬁ) has a unique sink
ats

Since G is acyclic, it has at least one sink The smallest edga of G incident tos’
is in Tp by Lemma 7. Since the edgeis directed towards in Tp by construction ofﬁ,
andTp is increasing with respect ® if s # s’ then there exists another edge: a on Ty
incident tos’, contradicting the minimality od. [

Theorem 9. Let G be an ordered graplsuch that the lexicographically smallest spanning
tree is increasing with respect to a vertex s
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Then the mapping sending an internal spanning tree T of G to the unique acyclic ori-
entation with a unique sink at s belonging to the activity class of orientations associated
with T by the correspondence of Theoréjis an activity-preserving bijection from the set
of internal spanning trees of G onto the set of acyclic orientations of G with a unique sink
ats

Theorem 9 is a straightforward corollary of Theorem 6 and Proposition 8. Note that
given any spanning trékin a graphG, and a vertes, it is always possible—and easy—to
linearly order the edges @ so thatT is the lexicographically smallest spanning tree and
is increasing with respect t& Label the edges of by consecutive integers, 2, ... in
successive layers defined by their distance #fter T has been labelled, label arbitrarily
the edges not if.

The bijections provided by Theorem 9 are different from the Gebhard—Sagan bijec-
tions. We observe that these bijections are activity-preserving by construction, whereas
Gebbard—Sagan bijections are not in general. The orientatiéiginl of [9, p. 139]has
O*-activity 2, but the spanning tree constructed by the algorithm has internal activity 3.

Fig. 3illustrates Theorem 9 on the grapty, already used ifrigs. 1and2. The Tutte
polynomial of Wy is

t(Was x, y) = x* + y* + 43 + 42y + dxy? + 4y% + 62
+ 9xy + 6y2 + 3x + 3y.

The graphW, hast (Wy; 1, 0) = 14 internal spanning trees.

The lexicographically smallest spanning tree 1236 is increasing with respect to the NE
(north—east) vertex. For each acyclic orientation with unique sink at the NE vertex, we have
indicated the internal spanning tr&egiven by Theorem 9 (its edges are drawn in heavy
lines). We have also indicated the active partition. The internal activity is the number of
parts of the active partitions, and the active edges are the first element of each part. By
reversing all edge directions in arbitrarily chosen parts of the active partition, we get the
activity class associated with By Proposition 8, in each activity class exactly one acyclic
orientation has a unique sink at the NE vertex: this orientation is showigir8.

HenceFig. 3also illustrates the bijection from internal spanning trees to activity classes
of acyclic orientations (a restriction of the active correspondence) defined in Section 5.

Fig. 4 gives details of the construction of Section 5 for the spanning free 1246.

The active partition is 134- 25 + 678. The graphs of Theorem 6 afA = G\25678,
G2 =G/134\678,G3 = G/12 345. The spanning trees with, O) activities being unique
in these very simple graphs one can check easily that wehavd 4,7, =2, 73 = 6, and,
of course, 1246= 14+ 2 4 6.

7. Link with components obtained from linear vertex ordering

An enumeration of acyclic orientations with a unique sink in a graph, using the coefficients
of the chromatic polynomial, has been described by I[43F in relation with results by
Cartier, Foata, Gessel and Vieniip8]. We prove in this section that the decomposition of
an acyclic orientation with a unique sink ifecomponentsconstructed if13] by means
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of a linear ordering of the vertices, is a particular case of the active partition of the present
paper, for some suitably defined linear ordering of the edges.
The following definitions and results are introducedli]. We say that a linear ordering
of V=v1 <--- <v,41 reflects the connectiviyf G if for all i, 1 <i <r + 1, the vertex;
is adjacent to at least one vertexwith j <i.

Let G bean acyclic orientation @ with set of verticed/ =v1 < - - - < v,4+1. We say that
w € V isaccessibldrom v € V if there exists a directed path fromto w. Let W1 be the
set of vertices o6 accessible fromw; = v1, and inductively, ifV\(Wp U - .- U W;_1) # @,
let w; be the smallest vertex i\ (W1 U --- U W;_1) and letV; be the set of vertices in
VAN(Wp U ---U W;_1) accessible fromw;. Then letk be the integer such th&t = (W1 +
o4 W),

The setsWj, ..., Wy are called thé/-component®f ﬁ, andk is the number ofv-
components ofG . Note as an example that, by definitions, the acyclic orientatio® of
defined by(v;, v;) directed fromw; to v; whenv; < v;, has exactly: + 1 V-components
V={vi}+ -+ {vr+1}.

A central result if13] is that, for a connected gragh= (V, E) with a linear ordering
of V. =v1 <--- <v,41 reflecting the connectivity dg, the coefficient; g is the number of
acyclic orientations ofs with unique sinkv1 with i + 1 V-components. This result can be
seen as a corollary of the next Proposition.

LetG=(V, E) be a connected graph, with a linear orderinet vy <--- <v,y1anda
linear ordering oE. We say that these two linear orderingsesanectivity-tree-compatible
or ct-compatiblefor short, if

(i) the linear ordering oY/ reflects the connectivity ds,
(ii) the minimal spanning tre@ = b1 < - - - < b, of G with respect to the linear ordering
of E is increasing with respect tg,
(III) for all i, 1<i<r, b; = (Ui+1, Uj) with Vj <Vj41.
Note that the property (iii) can be replaced by
@i’y foralli, 1<i<r, the subgraph spanned by, ..., v;+1} is the subgraph spanned by
{b1,...,D;}.

Lemma 10. LetG = (V, E) be a connected graph

(i) for any linear ordering on V which reflects the connectivity offi&re exists a linear
ordering on E ct-compatible with this ordering

(ii) for any linear ordering on E for which the minimal spanning tlee=b1 < - - - < b,
of G is increasing with respect to a vertexthere exists one and only one linear ordering
on V ct-compatible with this ordering

(i) there exist ct-compatible linear orderings on V and E

Proof. (i) We build Ty by induction withb, = (v1, v2) and, for 2<i <r, the edge; in the
subgraph induced bfps, vo, ..., v;+1}, not in the subgraph induced By1, v, ..., v;}.
Then we order the edgesiig by b1 < b, < - - - < b, and the edges iB'\ Ty arbitrarily with
e >b, fore € E\Tp.

(i) Necessarilyy = v1 is the smallest vertex, the second veriexs the other vertex of
b1, and, for all 3<i <r + 1, the vertex; such that; < --- < v; is the vertex ob;_1 not
previously defined.
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(i) Obvious in view of (i), the existence of a linear ordering of the vertices reflecting the
connectivity being clear. O

Lemma 11. LetG = (V, E) be a connected graph with ct-compatible linear orderings on
V and E Then for any connected subgraph H of G inducedb V, the minimal edge in
Tp which is not an edge of H has an extremity equatia(V\W).

Proof. Let b; be the minimal edge ofy = b1 < --- < b, which is not an edge dfl. If

b; = by then the result is obvious. We assume riowl. LetG’ be the graph induced by the
connected component @§\b; containingbs. Letj be such that £ j <i — 1. SinceTp is
increasing with respect tg, the edge; is an edge o', and since; is smallest not irH,
we haveb; in H. Then, since the linear orderings are ct-compatible, the vertiges. , v;
are all vertices ofz’ andH. On the other hand; .1, an extremity ofb; by definition of
compatibility between orders, is not a vertex@fnor H sinceb; is not an edge of;” and
since the linear ordering &f reflects the connectivity db. Sov;+1 = min(V\W). 0O

Proposition 12. LetG =(V, E) be a connected graph with ct-compatible linear orderings
onV and ELet G be an acyclic orientation of G with unique sink = min(V). Let
V = Wi+ --- + W be the partition of V into V-componentnd E = A1 + - - - + A; the
active partition of E with respect toG (where the indices respect the linear ordering of
the parts in the definition)s

We havek =i + 1, Wy = {v1}, and for all j, 1< j <i, Wi + Wo + - - - + W1 is the set
of vertices 0ilG(A1 + --- + A)).

Proof. FirstWy={v1}sincevyisasink. Let; < --- < a; be theO*-active elements o6 .
Let 1< j <i. We prove the assertion by induction prassume that it is true for ajf < ;.
Leta; = (vp, ve) With v, < vy. It follows from the definition of the active partition that at
a; is the smallest edge dp which is not an edge a (A1 + - - - + A;_1). It follows from
the definition ofv-components and the induction hypothesis that W1 + - -- + W;_1.
By Lemma 11, we have, = min(V\(Wy + --- + W;_1)). Hence by definition of the
V-componentsy, = min(W;) = w;.

Letv beavertex oG (A1 +---+ Aj) withv ¢ W1 +--- + W;_1. By definition of active
partitions,ﬁ(Al +---+A;)/(A1+ -+ A;_1) has a unique sourag and unique sink
vy, SO there exists a directed pathTﬁ from v, to v, sov € W;.

Conversely, leb € W;. There exists a directed path @ from v, = w; tov. On the
other hand, since; is the unique sink oﬁ, there exists a directed path franto v1. If v is
not a vertex olG(A1+--- + A;), sincev, andv; are vertices oG (A1 +--- + A)), these
paths induce a cycle iﬁ/(Al +---4+ Aj), but this is impossible sincE\(A; + - -- +
Aj)=Aj1+---+ A; isaunion of directed cocycles @ and so?;)/(Al +--+ A
is acyclic.

Since finallyW; + W2 + - - - + W, is the set of vertices aff (A1 + --- + A;) for all
1< j<i,itfollowsthatk =i+ 1. O

This result states that for ct-compatible vertex and edge orderings the two constructions
have the same outcome. Itis remarkable that originally their respective inductive definitions
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used reverse orders: the active partition is built from the greatest active element to the
smallest one, wheredscomponents are built from the first vertex to the last one.

Consider the upper right orientationwf, in Fig. 3, for which the active decomposition is
shown inFig. 4. The ct-compatible linear ordering of the verticesis b < ¢ < d < e with
a, b, ¢, d, e, respectively, the north—east, central, south—east, north—west and south—west
vertices. The active partition I8 = 134+ 25+ 658, theV-components ar¢ = {a} +
{b,d}+{c} + {e}. Indeed{a} = W1 is the unique sink{a, b, d} = W1 + W> are the vertices
of G(134H=G(A1),{a, b, ¢, d}=W1+ Wo+ Wz are the vertices af (12345 =G (A1+ A»)
and of courséa, b, ¢, d, e} = W1+ Wao+ W3+ Wy =V are the vertices off (12345678 =
G(A1+ A2+ A3) =G.

Finally, for ct-compatible linear orderings dhandE, an acyclic orientationG of G
with unique sinkvy hask + 1 V-components if and only iG has dual activityk, thus
the partition of the set of acyclic orientations with a unique given sink—which produces
an enumeration with respect to the coefficients of the Tutte polynomial—is the same when
built from V-components or from activity classes of orientations. However, the second point
of view, based on edges and duality instead of vertices, (1) extends to all orientations and
all linear orderings off, (2) is related to a similar decomposition for spanning trees, and
(3) generalizes to hyperplane arrangements and oriented matroids.
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