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Abstract

The main results of the paper are two dual algorithms bijectively mapping the set of spanning trees
with internal activity 1 and external activity 0 of an ordered graph onto the set of acyclic orientations
with adjacent unique source and sink. More generally, these algorithms extend to an activity-preserving
correspondence between spanning trees and orientations. For certain linear orderings of the edges,
they also provide a bijection between spanning trees with external activity 0 and acyclic orientations
with a given unique sink. This construction uses notably an active decomposition for orientations of
a graph which extends the notion of components for acyclic orientations with unique given sink.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Graph; Spanning tree; Activity; Directed graph; Acyclic; Orientation; Source; Sink; Algorithm;
Bijection; Tutte polynomial; Matroid; Oriented matroid

1. Introduction

The Tutte polynomialt (G; x, y) of a graphG is a two variable polynomial equivalent, up
to simple algebraic transformations, to the generating function of cardinality and number of
connected components of subsets of edges ofG. Numerous important numerical invariants
of G such as the numbers of spanning trees, ofq-colorings, of acyclic orientations ofG,
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etc. are evaluations oft (G; x, y). We refer the reader to[2] for a comprehensive survey of
properties and applications of Tutte polynomials of graphs, and, more generally, matroids.

Suppose the edge-set ofG is linearly ordered. Tutte[17] has shown

t (G; x, y) =
∑
i,j

ti,j x
iyj ,

where ti,j is the number of spanning trees ofG such thati edges are smallest in their
fundamental cocycle andj edges are smallest in their fundamental cycle. On the other hand,
Las Vergnas[14] has shown that

t (G; x, y) =
∑
i,j

oi,j2−i−j xiyj ,

whereoi,j is the number of orientations ofG such thati edges are smallest in some directed
cocycle andj edges are smallest in some directed cycle. This last formula generalizes a well-
known result of Stanley[16]: the number of acyclic orientations ofG is equal tot (G; 2,0).
Note that this result is a special case of counting theorems in hyperplane arrangements resp.
oriented matroids due to Winder[19], Zaslavsky[23] resp. Las Vergnas[24].

Comparing these two expressions fort (G; x, y) we getoi,j = 2i+j ti,j for all i, j . A
natural question arises of a bijective proof for this formula[14]. The problem is to define
a correspondence between spanning trees and orientations, preserving parameters(i, j),
calledactivities in the literature, and compatible with the above formula. More precisely,
the desired correspondence should associate with an(i, j)-activespanning tree ofG, a
set of 2i+j (i, j)-active orientations ofG, in such a way that each orientation ofG is the
image of a unique spanning tree. The main object of the present paper is to describe such a
correspondence, called here theactive tree-orientation correspondence.

Spanning trees and orientations with(1,0) activities—or, dually,(0,1) activities—
constitute the main case of our construction. Several papers of the literature deal with
(1,0)-orientations of graphs, i.e. acyclic orientations with adjacent unique source and sink.
Enumerations of(1,0)-orientations are studied by Greene and Zaslavsky[12] for graphs,
zonotopes and hyperplane arrangements. In particular, they prove that the number of acyclic
orientations of a graph with adjacent unique source and sink is 2�(G), where�(G) = t1,0.
Equivalently, we haveo1,0 = 2t1,0 (implying that this number does not depend on the par-
ticular source and sink). In[6] bijective proofs are given of a result of[12] on acyclic
orientations with unique sink (see below, and Section 6). Orientations with(1,0) activities
are studied in[5] for their relevance in several graph algorithms. On the other hand, the
external activity of a spanning tree has recently retained some attention in relation with the
chip-firing game and the sandpile model[3] (see also[1] for the particular case ofKn and
parking functions).

Section 3 contains the main results. Two dual algorithms establish a bijection between
spanning trees and orientations with(1,0) activities. In Section 4, we obtain as a corollary, a
bijection for(0,1) activities. In Section 5, these bijections are extended to a correspondence
between spanning trees and orientations consistent with the formulaoi,j = 2i+j ti,j , thus
answering the above question. We point out that this correspondence not only preserves
activities but also active elements. The construction uses reductions from general activities
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to the(1,0) case. In Section 6, we show that the correspondence of Section 5 produces a
bijection between internal spanning trees and acyclic orientations with a unique sink at a
given vertex.

A bijection between acyclic orientations with a unique fixed sink and internal spanning
trees has recently appeared in[6]. We observe that this bijection is not activity-preserving,
whereas the bijection in Section 6 is activity-preserving. The correspondence of Section 3
answers a question of[6] (see (a) p. 145). Several years ago, one of the present authors
defined in an extended abstract[15]—not quoted in[6]—a different activity-preserving
correspondence between spanning trees and orientations in graphs. This correspondence
may probably not be generalized beyond regular matroids. The present one generalizes in
a natural way to any oriented matroid[11]. The main results have been presented in the
Ph.D. Thesis[7]. Some particular cases are studied in[8,10] (see also[9] for a survey). The
graphical case is the object of the present paper (extended from FPSAC02 Proceedings). In
this case, interesting specific properties involving vertices can be established (see Sections
6 and 7). An enumeration of acyclic orientations with a unique sink in a graph, constructed
from a linear ordering of the vertices, and involving the coefficients of the chromatic poly-
nomial, has been described by Lass[13], linked to constructions by Viennot[18], P. Cartier,
D. Foata, and I. Gessel (see[13]). This construction appears in Section 7 to be a particular
case of the present one: for a linear ordering of the edges compatible with the ordering of
the vertices, we obtain the same partition for acyclic orientations with unique given sink.

Our point of view is matroidal: the correspondence depends on a linear ordering of the
edges and the cycle–cocycle duality allows, for instance, to consider all orientations—not
only the acyclic ones.

2. Notation and terminology

The present paper deals exclusively with graphs. We point out that definitions and results
of this section have extensions to matroids and oriented matroids.Throughout the paper, if no
confusion results, we will implicitly assume that graphs under consideration are connected,
and that cycles and cocycles areelementary(i.e. minimal for inclusion). Graphs considered
in the paper may have loops or multiple edges.

Let G be a graph with edge-setE, andT ⊆ E be a spanning tree ofG. For e ∈ E\T ,
we denote byC(T ; e) the fundamental cycleof e with respect toT, i.e. the unique cycle
contained inT ∪ {e}, obtained from the unique path ofT joining the two vertices ofe.
For e ∈ T , we denote byC∗(T ; e) the fundamental cocycleof e with respect toT, i.e. the
unique cocycle contained in(E\T ) ∪ {e}. The cocycleC∗(T ; e) is the set of edges ofG
joining the two connected components ofT \{e}. Fore ∈ E\T andf ∈ T , we have clearly
f ∈ C(T ; e) if and only if e ∈ C∗(T ; f ), and thenC(T ; e) ∩ C∗(T ; f ) = {e, f }.

We say that a graphG is ordered if its edge-setE is linearly ordered. The notion of
activitiesof a spanning treeT in an ordered graphG is due to Tutte[17]. The internal
activity �(T ) is the number of edgese ∈ T smallest in their fundamental cocycleC∗(T ; e),
and theexternal activity�(T ) is the number of edgese ∈ E\T smallest in their fundamental
cycleC(T ; e). We denote byti,j (G), or simplyti,j , the number of spanning trees ofG such
that�(T ) = i and�(T ) = j .
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The Tutte polynomialt (G; x, y) has been introduced by Tutte[17], under the name
dichromateto generalize in a self-dual way the chromatic polynomial of a graphG=(V ,E),
as

t (G; x, y) =
∑
A⊆E

(x − 1)c(A)−c(E)(y − 1)|A|−|V |+c(A),

wherec(A) denotes the number of connected components of the graph(V ,A) for A ⊆ E

(counting each isolated vertex for one component). Then, in order to give a combinatorial
interpretation of the coefficients, Tutte has shown, by deletion/contraction of the greatest
element, that

t (G; x, y) =
∑
i,j �0

ti,j x
iyj .

This formula implies thatti,j does not depend on the linear ordering.
A cycle resp. cocycle in a directed graph isdirectedif all its edges are directed consistently.

The (primal) orientation activityof an ordered directed graphG, or O-activity, denoted by
o(G), is the number of edges smallest in some directed cycle. Thedual orientation activity
of G, or O∗-activity, denoted byo∗(G), is the number of edges smallest in some directed
cocycle. We denote byoi,j (G) the number of orientations

−→
G of G such thato∗(−→G)= i and

o(
−→
G) = j . The definitions ofO- andO∗-activities have been introduced in[14] in view of

the formula

t (G; x, y) =
∑
i,j

oi,j2−i−j xiyj .

This formula implies thatoi,j does not depend on the ordering, and thatoi,j = 2i+j ti,j .
The proof in[14] is by deletion/contraction of the greatest edge.

Internal and external activities of spanning trees, and also the two types of orientation
activities, are dual notions from the point of view of graph duality. IfG is a planar graph
imbedded in the plane, andG∗ is a dual ofG, we have�G∗(T )= �G(E\T ). If G is directed,
a directed dualof G is a planar dualG∗ directed such that all directions of correspond-
ing edges inG andG∗ define rotations of the same type, clockwise or counterclockwise.
Then, we haveo∗(G) = o(G∗). The graphG is said to beacyclic if there is no directed
cycle, i.e. if o(G) = 0, and, dually, is said to betotally cyclic (or strongly connected)
if o∗(G) = 0.

In a directed graph, given an elementary cycleC and a direction alongC, we defineC+
as the set of edges ofC directed consistently with the direction alongC, andC− as the
set of edges directed in the opposite direction. An elementary cocycleD is the set of edges
joining two subsets partitioning the vertex-set ofG into two connected subgraphs. Given
an elementary cocycleD and a direction between the two subsets of the partition induced
by D onV, we defineD+ as the set of edges ofD directed consistently with this direction
between subsets, andD− as the set of edges directed in the opposite direction. In a directed
graph, the notationC(T ; e) for e ∈ E\T resp.C∗(T ; e) for e ∈ T can be made precise by
choosing the cycle direction resp. cocycle direction consistent with the direction ofe, i.e.
such thate is in the positive part.
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We make a crucial use in the proof of Theorem 4 (Step 9) of the (directed)graphical
orthogonality property|C+ ∩ D+| + |C− ∩ D−| = |C− ∩ D+| + |C+ ∩ D−| between a
cycleC and a cocycleD. In all other places, the weaker (directed)orthogonality property
C ∩ D �= ∅ implies (C+ ∩ D+) ∪ (C− ∩ D−) �= ∅ and(C− ∩ D+) ∪ (C+ ∩ D−) �= ∅
suffices for our purpose. A more general proof for Theorem 4 using only this last orthogo-
nality property is made in[11] (see also[7]). We mention that the graphical orthogonality
property characterizes regular matroids[20], whereas the orthogonality property character-
izes oriented matroids[21]. See for instance[2] for generalization of the Tutte polynomial
in matroids.

3. The bijection for (1,0)-activities

We recall thatt1,0(G) �= 0 if and only if the graphG is 2-connected and has no loop[2].

Proposition 1. Let G be an ordered directed graph, with smallest edgee1 = s′s′′ directed
from s′ to s′′. Theno∗(G) = 1 ando(G) = 0 if and only if G is acyclic, with unique source
s′ and unique sinks′′.

Proof. A directed graph has orientation activity 0 if and only if it is acyclic by definition.
In an acyclic graph,e1 belongs to a cocycle, so it is the smallest element of a cocycle. An
acyclic graph has a source (otherwise one could construct easily a directed cycle). The set
of edges having this source as an extremity is then a directed cocycle.

If the graph has dual activity 1 then this source must be an extremity ofe1 (becausee1
is the only possible minimal element of a cocycle). The same properties holding for the
opposite orientation, the graph has a sink and any sink must be an extremity ofe1. This
proves that the graph has unique sources′ and unique sinks′′.

Conversely, supposeG has a unique sources′ and a unique sinks′′. The two connected
subgraphs induced by the partition ofV defined by a cocycle are also acyclic. Hence, they
must have a source and a sink. If the cocycle is directed, there exist a source ofG in one
component and a sink ofG in the other. Necessarily these two vertices ares′ ands′′, and so
e1 belongs to the directed cocycle.�

Proposition 2. Let G be a loopless ordered graph with edge-set E ande1 = Min(E), and
letTbeaspanning treeofG.SetT ={b1 <b2 < · · ·<br}andE\T ={a1 <a2 < · · ·<an−r}.

(i) �(T ) = 0 if and only ifbj = Min(E\⋃1� i<j C
∗(T ; bi)) for j = 1,2, . . . , r.

(ii) �(T )= 1 if and only ifaj = Min((E\{e1})\⋃1� i<j C(T ; ai)) for j = 1,2, . . . , n− r.

Proof. (i) Let e = Min(E\⋃1� i<j C
∗(T ; bi)), and supposee <bj . We havee /∈ T , since

e /∈ {b1, . . . , bj−1} by definition. SetC = C(T ; e). If bi ∈ C, we havee ∈ C∗(T ; bi),
thereforeC ∩ {b1, . . . , bj−1} = ∅. It follows thatC ∩ T ⊆ {bj , . . . , br}, thene = Min C,
hence�(T )>0.

Conversely, supposebj = Min(E\⋃1� i<jC
∗(T ; bi)) for j = 1,2, . . . , r. Lete ∈ E\T .

SetC=C(T ; e), and letbj =Min C∩T . We havee /∈ ⋃
1� i<j C

∗(T ; bi), otherwisebi ∈ C

for somei < j . Hencebj < e, ande is not externally active.
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(ii) Let e = Min((E\{e1})\⋃1� i<j C(T ; ai)), and supposee <aj . We havee ∈ T ,
sincee /∈ {a1, . . . , aj−1} by definition. SetD=C∗(T ; e). If ai ∈ D, we havee ∈ C(T ; ai),
thereforeD ∩ {a1, . . . , aj−1} = ∅. It follows that D ∩ (E\T ) ⊆ {aj , . . . , an−r}, then
e = Min D, hence�(T )>1.

Conversely, supposeaj =Min((E\{e1})\⋃1� i<j C(T ; ai)) for j =1,2, . . . , n− r. Let
e ∈ T \{e1}. SetD = C∗(T ; e), and letaj = Min D\T . We havee /∈ ⋃

1� i<j C(T ; ai),
otherwiseai ∈ D for somei < j . Henceaj < e, ande is not internally active. �

The following proposition defines the active correspondence for(1,0)-activities.

Proposition 3. Let G be an ordered graph, with edge-setE = {e1 = s′s′′ <e2 < · · ·<en},
and T be a spanning tree of G with internal activity1 and external activity0.The following
two algorithms produce the same acyclic orientation of G, with unique sources′ and unique
sinks′′.

Step0 (in both algorithms): direct the smallest edgee1 from s′ to s′′.
Algorithm 1. LetE\T = {a1 = e2 <a2 < · · ·<an−r}.
Stepi = 1,2, . . . , n − r: direct the undirected edges ofC(T ; ai) in the cycle direction

opposite to the direction of its smallest edge.
Algorithm 2. LetT = {b1 = e1 <b2 < · · ·<br}.
Step1: direct all edges�= e1 ofC∗(T ; b1) in the cocycle direction defined bye1.
Stepi=2, . . . , r:direct theundirectededgesofC∗(T ; bi) in thecocycledirectionopposite

to the direction of its smallest edge.

An example for Algorithms 1 and 2 applied to the 4-wheelW4 is given inFig. 1.

Proof of Proposition 3. SinceG has a spanning treeT with (1,0) activities, it has no
isthmus or loop.

(1) Algorithm1 directs all edges of G, and(1′) Algorithm2 directs all edges of G.

We show inductively that all edges in
⋃

1� j � i C(T ; aj ) are directed by Algorithm 1
for i = 1,2, . . . , n − r. We have to check that before Stepi the edgeb = Min C(T ; ai) is
directed. This is clear fori=1 since thenb=e1, so supposei�2. We haveb ∈ T , otherwise
b = ai would be externally active. Ifb = e1, thenai is directed at Stepi of Algorithm 1. If
b �= e1, thenb is not the smallest element of its fundamental cocycle since�(T ) = 1. Set
aj = Min C∗(T ; b). We haveaj < b<ai , henceaj is directed before Stepi by induction.
Sinceb ∈ C(T ; aj ), the edgebhas been directed byAlgorithm 1 at a Step�j < i, henceai
is directed at Stepi. On the other hand, sinceG has no isthmus, we have

⋃
i C(T ; ai)=E,

hence all edges ofG are directed by Algorithm 1.
The proof of(1′) is dual.

(2) Algorithms1 and2 produce the same orientation of G.

The proof is by induction on the rank in the ordering. Leta ∈ E\T , and setb =
Min C(T ; a), a′ = Min C∗(T ; b). We haveb ∈ T , otherwiseb = a is externally active,
contradicting�(T ) = 0. The first case isa′ ∈ T . Then the edgeb = a′ is internally active,
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Fig. 1. Two dual algorithms for(1,0) activities.

henceb = e1 since�(T ) = 1. In this casea ande1 have opposite directions inC(T ; a) for
Algorithm 1. We havea ∈ C∗(T ; e1). Orthogonality impliesamust have the same direction
in C∗(T ; e1) ase1. This is the direction it is given in Step 1 of Algorithm 2. The second case
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is a′ ∈ E\T , and thusb �= e1. We havea ∈ C∗(T ; b) anda′ <b<a. By Algorithm 1, the
edgesb anda have opposite directions inC(T ; a). We haveC(T ; a) ∩ C∗(T ; b) = {a, b},
hence by orthogonalitya andb have the same direction inC∗(T ; b). As b is the smallest
edge inT such thata ∈ C∗(T ; b), it follows thata is undirected whenb is directed by Algo-
rithm 2. Thereforea andb have the same direction inC∗(T ; b) for Algorithm 2, opposite
to the direction ofa′. Since by induction, the directions ofb agree in Algorithms 1 and 2,
the same conclusion holds fora.

The proof forb ∈ T is similar and left to the reader.
Let

−→
G be the orientation ofG constructed by Algorithms 1 and 2.

(3) o∗(−→G) = 1 and(3′) o(−→G) = 0.

Suppose there is a directed cocycleD in
−→
G with Min D �= e1, contradicting (3). Since

G has no isthmus, we have
⋃

i C(T ; ai) = E. Let i be the smallest integer such thatD ∩
C(T ; ai) �= ∅. Let b ∈ D ∩ C(T ; ai)\{ai}. Sinceb ∈ C(T ; ai)\{ai}, we haveb ∈ T . By
the choice ofi, the edgeb is directed at stepi of Algorithm 1. Sete = Min C(T ; ai). We
havee �= ai otherwiseai would be externally active, contradicting�(T ) = 0. If i = 1, we
haveai = e2 ande = e1, soe �= b according to our assumption. Ifi�2 then, by (1), the
edgee is directed before Stepi of Algorithm 1 and sinceb is not we havee �= b. Hence,
for any i, by definition of Algorithm 1, bothb andai are directed in the same direction of
C(T ; ai), opposite to the direction ofe. It follows that all edges inD ∩ C(T ; ai) have the
same direction in bothD andC(T ; ai), contradicting orthogonality.

Suppose there is a directed cycleC in
−→
G , contradicting(3′). SinceG has no loop, we

have
⋃

i C
∗(T ; bi) = E. Let i be the smallest integer such thatC ∩ C∗(T ; bi) �= ∅. Let

a ∈ C ∩ C∗(T ; bi)\{bi}. By the choice ofi, the edgea is directed at stepi of Algorithm 2.
If i = 1, i.e.b1 = e1, thena andbi have the same direction inC∗(T ; bi) by definition of
Step 1 of Algorithm 2. Supposei�2. Sete=Min C∗(T ; bi). By (1′), the edgee is directed
after Stepi − 1 of Algorithm 2 and sincea is not, we havee �= a. On the other hand,
e �= bi otherwisebi would be internally active, implyingi = 1 since�(T ) = 1. Hence, by
definition of Stepi�2 in Algorithm 2, botha andbi are directed in the same direction of
C∗(T ; bi), opposite to the direction ofe. It follows that all edges inC ∩C∗(T ; bi) have the
same direction in bothC andC∗(T ; bi), contradicting orthogonality. �

Theorem 4. Let G be an ordered graph. The mapping defined by Algorithms1 and2 is a
bijection from the set of spanning trees of G with(1,0) activities onto the set of orientations
of G with(1,0) activities such that the direction of the first edge is fixed.

Proof. Since 2t1,0 = o1,0 by [12], it suffices to show that the mapping is injective. Sup-
pose there exist two different spanning treesT = {b1 <b2 < · · ·<br} andT ′ = {b′

1 < · · ·
<b′

r} with (1,0) activities such that Algorithms 1 and 2 produce the same directed
graph.

(1) Let k be the smallest integer such thatC∗(T ; bk) �= C∗(T ′; b′
k). By Proposition 2,

we havebi = b′
i for all i�k. Setb = bk = b′

k, D =C∗(T ; b) andD′ =C∗(T ′; b). We have
b ∈ D+ ∩ D′+.
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(2) T ∩ D′ ⊆ {b = bk, . . . , br}, and(2′) T ′ ∩ D ⊆ {b = b′
k, . . . , b

′
r}. If i < k, by (1) we

havebi = b′
i /∈C∗(T ′; b′

k) = D′.
(3) T ∩ D′ ⊆ D′+, and(3′) T ′ ∩ D ⊆ D+.
Let bi ∈ T ∩ D′. By (2), we havei�k. If i = k, thenbi = bk = b′

k = b ∈ D′+. Suppose
i > k. Sincebi ∈ D′ = C∗(T ′; b′

k), the edgebi is directed at a stepj �k of Algorithm 2
applied toT ′. If j < k, we haveb′

j = bj ∈ T , hencebi /∈C∗(T ; bj ) = C∗(T ′; b′
j ), so that

bi cannot be directed at Stepj.
Thereforej = k. If k >1, the edgesb = b′

k andbi are directed by Algorithm 2 in the
same cocycle direction ofD′ (opposite to the direction of the smallest edge ofD′), hence
bi ∈ D′+. If k = 1, then, by definition of Step 1 in Algorithm 2, we haveD′ = D′+.

(4) |T ∩ D′|�2 and(4′) |T ′ ∩ D|�2.
SinceT is a spanning tree andD′ a cocycle, we have|T ∩D′|�1. If |T ∩D′|=1, thenD′ is

a fundamental cocycle ofT, and necessarily, sinceb=bk ∈ T , we haveD′ =C∗(T ; b)=D,
contradicting the definition ofk. Therefore|T ∩ D′|�2.

(5) Leta be the smallest element of the set

⋃
e∈(T∩D′)\{b}

C∗(T ; e) ∪
⋃

e∈(T ′∩D)\{b}
C∗(T ′; e),

which is not empty by (4). By symmetry, we may suppose thata = Min C∗(T ; e) for some
e ∈ (T ∩ D′)\{b}. We havee = b! for some!> k by (2). In particular!>1.

(6)a /∈ T . If a ∈ T , thena=e anda=Min C∗(T ; a) is internally active. Hencea=e1=b1,
contradicting!>1 (5).

SetC = C(T ; a).
(7) a /∈ T ′. Supposea ∈ T ′. We havea >b by (6). If a ∈ D, we havea ∈ (T ′ ∩ D)\{b},

hencea�Min C∗(T ′; a) by (5). Thereforea is internally active, hencea=e1, contradicting
(6). Soa /∈D. Sincea >b, we have alsoa /∈D′.

Let x ∈ C ∩ D′. We havex �= b sincea /∈D, andx �= a sincea /∈D′. Therefore,
x ∈ ((C\{a}) ∩ D′)\{b} ⊆ (T ∩ D′)\{b}. Hencea�Min(C∗(T ; x)), and in facta =
Min(C∗(T ; x)) sincex ∈ C=C(T ; a) impliesa ∈ C∗(T ; x). By Algorithm 2 applied toT,
the edgex is directed in the cocycle direction opposite toa in the cocycleC∗(T ; x), hence
by orthogonalitya andx have the same cycle direction onC, i.e. x ∈ C+. On the other
hand, we havex ∈ D′ = C∗(T ′; bk) andx /∈C∗(T ′; b′

i ) = C∗(T ; bi) for i < k, sincex in
T. Hence, the edgex is directed at Stepk of Algorithm 2 applied toT ′. Sincex >bk = b,
the edgesb andx have the same cocycle direction inD′, i.e. x ∈ D′+. It follows that
C ∩ D′ ⊆ C+ ∩ D′+.

By (5), we havea ∈ C∗(T ; e), hencee ∈ C(T ; a) = C, and alsoe ∈ D′. We have
e ∈ C ∩ D′ andC ∩ D′ ⊆ C+ ∩ D′+, contradicting the orthogonality property.

SetC′ = C(T ′; a). We havea ∈ C+ ∩ C′+.
(8) (C ∩ D′)\{a, b} ⊆ C+ ∩ D′+ and(8′) (C′ ∩ D)\{a, b} ⊆ C′+ ∩ D+.
We haveC\{a} ⊆ T , hence(C ∩ D′)\{a, b} ⊆ T ∩ D′ ⊆ D′+ by (3). Let x ∈

(C ∩ D′)\{a, b}. We havex ∈ (T ∩ D′)\{b}, hencea�Min C∗(T ; x) by (5). On the other
handx ∈ C=C(T ; a), hencea ∈ C∗(T ; x). It follows thata=Min C∗(T ; x).We havex=bi
with i > k. By Algorithm 2 applied toT, at Stepi the edgex = bi is directed in the cocycle
direction ofC∗(T ; x) opposite to the direction ofa. Now C(T ; a) ∩ C∗(T ; x) = {x, a},
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hence by orthogonality the edgesx anda have the same cycle direction in the cycleC, i.e.
x ∈ C+.

(9) C ∩ D′ ⊆ {a, b} and(9′) C′ ∩ D ⊆ {a, b}.
SupposeC ∩ D′\{a, b} �= ∅. By (8) and graphical orthogonality, we havea ∈ D′− or

b ∈ C−, and both hold if{a, b} ⊆ C ∩ D′.
Supposea ∈ D′−. Then a ∈ C′ ∩ D′ ⊆ {a, b}, hence by orthogonality, we have

C′ ∩ D′ = {a, b} andb ∈ C′+. By (8) and graphical orthogonality applied toC′ ∩ D, we
havea ∈ D−. Thena ∈ C∩D ⊆ {a, b}, hence by orthogonality, we haveC∩D={a, b} and
b ∈ C+. Therefore{a, b} ⊆ C ∩D′, botha ∈ D′− andb ∈ C− should hold: contradiction.

The caseb ∈ C− is similar, and left to the reader.
(10) By (5), we havea = Min C∗(T ; e), with e = b! ∈ (T ∩D′)\{b} and!> k. We have

e ∈ C = C(T ; a), hencee ∈ C ∩ ((T ∩ D′)\{b}) ⊆ (C ∩ D′)\{b} ⊆ {a} by (9). Therefore
a = e. Hencea = Min C∗(T ; a), i.e.a is internally active. Then, necessarily,a = e1 = b1,
sinceT andT ′ have internal activity 1, contradictinge = b! with !>1 (5). �

Note. We point out that theconverse algorithm, from (1,0)-active orientations to(1,0)-
active spanning trees, is more involved. It has been obtained in the geometric and general
context of oriented matroids.A possible construction is by deletion/contraction of the great-
est element[11] (see also[7]). But overall its main definition in[11] is in terms of extensions
of linear programming.

4. The bijection for (0,1)-activities

The case of(0,1)-activities can be reduced to(1,0)-activities by the following Proposi-
tion, whose proof is straightforward.

Proposition 5. Let G be an ordered graph with edge-set{e1 <e2 . . .}.
(i) If T is a spanning tree with(1,0) activities, thenT \{e1} ∪ {e2} is a spanning tree with

(0,1) activities. The mapping defined byT �→ T \{e1}∪ {e2} is a bijection between the sets
of spanning trees of G with(1,0) resp. (0,1) activities.

(ii) If
−→
G is an orientation of G with(1,0) orientation activities, then the orientation of G,

denoted−e1

−→
G , obtained by reversing the direction ofe1, has(0,1) orientation activities.

The mapping defined by
−→
G �→ −e1

−→
G is a bijection between the sets of orientations of G

with (1,0) resp. (0,1) activities.

A bijection for(0,1)activities can be obtained either from the bijection for(1,0)activities
in G by means of Proposition 5, or from the bijection for(1,0) activities in the dual graph
G∗ whenG is planar (or in the dual oriented matroid in general). It can be shown that these
two bijections are identical, providing astrong duality propertyfor the correspondence, see
[11] for details (or also[7]).

Fig. 2 shows an application of Proposition 5 to the planar graphW4 considered in
Fig. 1. We observe that the(0,1)-orientation associated with the spanning treeT = 2368
is different from the orientation associated with the same tree by the algorithm of[15]: the
edge 8 of[12, Fig. 4]is reversed inFig. 2.
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5. The general correspondence

In this section, we construct theactive(tree-orientation) correspondenceassociating with
a general spanning tree of activities(i, j) a set of 2i+j orientations with the same activities,
such that each orientation is the image of a unique spanning tree.

The main content of this section is that the construction of the active correspondence can
be reduced to the(1,0) case by means ofactive partitionsof the edge-set. It turns out that,
contrasting with Sections 3, 4, 6, where specific properties of graphs are used, Section 5
is a mere specialization to graphs of properties holding in matroids and oriented matroids.
In consequence, we will only sketch the main results, and refer the reader to[11] (see also
[7]) for details and proofs.

Active partitions can be described either in terms of spanning trees in an ordered graph,
or of orientations in an ordered directed graph. One main point is that if a spanning tree and
an orientation are related by the active correspondence, then the two definitions produce
the same active partition. The definition of an active partition in terms of spanning trees is
much more involved than its definition in terms of orientations. However, in both cases, the
first step is to separate the two dual types of activities, and the second step is to reduce the
construction to(1,0) activities.

Let G be an ordered graph with edge-setE, andT be a spanning tree ofG with activities
(i, j). The first step is to construct a setF ⊆ E whose elements are calledexternal. Then
E\F is the set ofinternalelements. For the reader’s convenience, we sketch the construction
of F (see[4] for more details and proofs).

ForX ⊆ E set

f (X) = X ∪
⋃

e∈T∩X

C∗(T ; e) ∪ {e ∈ E | ∅ ⊂ C∗
<(T ; e) ⊆ X},

whereC∗
<(T ; e) is the set of elements ofC∗(T ; e) strictly smaller thane, and

f̂ (X) =
⋃
i�1

f i(X).
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Let a1 < · · ·<ai be the internally active elements ofT, and letF = E\f̂ ({a1, . . . , ai}).
ThenF separates the internal and external activities:T \F is a spanning tree with(i,0)

activities of the contractionG/F of G by F, andT ∩ F is a spanning tree with(0, j)
activities of the subgraphG(F) [4].

Let
−→
G be an orientation associated withT by the active correspondence. By a classical

result of Minty [22], in a directed graph an edge belongs either to a directed cycle or to a
directed cocycle, but not to both. ThenF is thetotally cyclic partof

−→
G , i.e. the union of

all directed cycles of
−→
G , andE\F is theacyclic partof G, i.e. the union of all directed

cocycles of
−→
G .

It follows from this first reduction that without loss of generality, we may restrict the
construction to(i,0) or (0, j) activities. Furthermore, internal and external elements, and
also totally cyclic parts and acyclic parts, being related by duality (cycles and cocycles play
dual parts), we may restrict ourselves to spanning trees with external activity 0, orinternal
spanning trees, and acyclic orientations. The second step reduces the construction to(1,0)
activities.

For an internal spanning treeT with internally active elementsa1 < · · ·<ai , for j =
1,2, . . . , i set

Aj = f̂ ({aj , . . . , ai})\f̂ ({aj+1, . . . , ai}).
Theactive partitionfor T is the partition

E = A1 + · · · + Ai .

Set

Tj = T ∩ Aj ,

thenT = T1 + · · · + Ti . And set

Gj = G/(A1 ∪ A2 ∪ · · · ∪ Aj−1)\(Aj+1 ∪ Aj+2 ∪ · · · ∪ Ai),

where, as usual\ denotes the deletion, and/ denotes the contraction.
Let

−→
G be an acyclic orientation of the ordered graphG with o∗(−→G) = i, and let

a1 < · · ·<ai be itsO∗-active edges. Then, forj = 1,2, . . . , i, set

Aj =
⋃

D directed cocycle
Min D=aj

D

∖ ⋃
D directed cocycle

Min D>aj

D.

Theactive partitionof
−→
G for the orientation is the partition

E = A1 + A2 + · · · + Ai .

Theactivity class of orientationsof
−→
G is the set of 2i orientations obtained by reversing

all edge directions in the 2i possible unions of some of theAj ’s. As easily seen, these 2i

orientations have the same active partition.
Set

−→
Gj = −→

G/(A1 ∪ A2 ∪ · · · ∪ Aj−1)\(Aj+1 ∪ Aj+2 ∪ · · · ∪ Ai).
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Fig. 3. Active bijections.

Theorem 6. The setsTj are spanning trees with(1,0) orientation activities in the graphs

Gj on the edge-setsAj . The graphs
−→
Gj on the edge-setsAj have(1,0) orientation activ-

ities. The number of acyclic orientations with given active partition is2i times the number
of spanning trees with same active partition.

Using the bijection of Section 3 on each treeTj for j = 1,2, . . . , i, we associate with
eachTj a directed graph

−→
Gj and its opposite with(1,0) activities. Then let

−→
G be the

directed graph obtained by directing the edges ofG with respect to the directions in thei
minorsGj . Then

−→
G has(i,0) activities. We define the active correspondence by associating
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Fig. 4. Decomposition of an orientation.

the directed graph
−→
G with the spanning treeT, and the spanning treeT with all graphs in

the activity class of
−→
G . This active correspondence associates the same spanning tree with

all orientations in an activity class, and moreover preserves active elements and active
partitions.

The proofs of Theorem 6 and all the results mentioned above, and the statements and
proofs of the mixed case, when bothF andE\F are not empty, can be found in[11] (see
also[7]) in the more general context of oriented matroids. We will illustrate its content in
Section 6 on an example (Figs. 3and4).

The activity classes constitute a partition of the set of orientations of a graph. The active
correspondence induces anactivity preserving bijection between spanning trees and activity
classes of orientations.

6. A bijection for acyclic orientations with a unique sink

Greene and Zaslavsky[12] have shown that the number of acyclic orientations of a graph
G with a unique sink at a given vertex is equal tot (G; 1,0). Gebhard and Sagan[6] give
three bijective proofs of this result. The third one[6] Theorem 4.1 is by means of an explicit
bijection between acyclic orientations with a given unique sink and internal spanning trees,
as suggested by the relationt (G; 1,0) = ∑

i ti,0.
It turns out that the correspondence defined in Section 5 provides another bijection be-

tween internal spanning trees and acyclic orientations with a given unique sink, which
moreover preserves active edges. The internally active edges of an internal tree become
O∗-active edges of the orientation.

Lemma 7. In an ordered graph, the smallest edge of any cocycle belongs to the lexico-
graphically smallest spanning tree.

Proof. Let G be an ordered graph, andT0 be its lexicographically smallest spanning tree.
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(1) Let e ∈ T0 andD be the fundamental cocycle ofe with respect toT0. Thene is the
smallest element ofD. Otherwise there isa ∈ D such thata < e, and the spanning tree
T0 − e + a is lexicographically smaller thanT0.

(2) Conversely, letX be an elementary cocycle ofG with smallest elementa. Suppose
a /∈ T0. Lete ∈ X∩T0, andD be the fundamental cocycle ofewith respect toT0. Sincee is
the smallest element ofD by (1), we havea /∈D. By elimination there is a cocycleY such
thata ∈ Y ⊆ (D ∪X)− e. Sincea is smallest inX andesmallest inD, we havea smallest
in Y. We haveY ∩ T0 ⊆ (X ∩ T0) − e, hence|Y ∩ T0|< |X ∩ T0|. Applying inductively
this property, we obtain that there isX with X ∩ T0 = ∅, a contradiction since cocycles and
spanning trees always meet. Hencea ∈ T0. �

We say that a spanning treeT in an ordered graph isincreasing with respect to a vertex s
if the edges increase for the ordering along any path ofT beginning ats.

Proposition 8. LetGbeanorderedgraphsuch that the lexicographically smallest spanning
tree is increasing with respect to a vertex s. Then there is exactly one acyclic orientation
with a unique sink at s in each activity class of acyclic orientations of G, namely the unique
orientation in the class defined by reversing or not all edge directions in subsets of the active
partition in order to obtain that active edges are directed towards s onT0.

Note that the hypothesis impliess is an extremity of the smallest (non loop) edge ofG.

Proof of Proposition 8. Let T0 denote the lexicographically smallest spanning tree of
G = (V ,E). By hypothesisT0 is increasing with respect tos.

(1)The edges of a directed(elementary) cocycle D defined by a2-partitionV =V1 +V2
in an acyclic orientation

−→
G of G with a unique sink ats ∈ V1 are directed fromV2 to V1.

Since
−→
G is acyclic,

−→
G(V2) contains at least one sinks′. If the edges ofD were directed

from V1 to V2, thens′ would be a sink ofG with s �= s′, contradicting the uniqueness.
(2) If

−→
G is an acyclic orientation of G with a unique sink at s, then theO∗-active edges

of T0 are directed towards onT0.
Let a be aO∗-active edge of

−→
G , andD be a directed cocycle with smallest edgea. By

Lemma 7, we havea ∈ T0. SinceT0 is increasing anda smallest inD, there is no edge of
D on the path ofT0 from s to the closest vertex ofa. Hence, with notation of (1), this path
is in V1, and by (1)a is directed towardss.

(3) Conversely, let
−→
G be the (unique) graph in a given activity class of acyclic orientations

of G such that theO∗-active edges of this class are directed towardssonT0. The graph
−→
G

exists and is unique by the properties stated in Section 5.The graph
−→
G has a unique sink

at s.
Since

−→
G is acyclic, it has at least one sinks′. The smallest edgea of

−→
G incident tos′

is in T0 by Lemma 7. Since the edgea is directed towardss in T0 by construction of
−→
G ,

andT0 is increasing with respect tos, if s �= s′ then there exists another edgeb<a onT0
incident tos′, contradicting the minimality ofa. �

Theorem 9. Let G be an ordered graph, such that the lexicographically smallest spanning
tree is increasing with respect to a vertex s.
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Then the mapping sending an internal spanning tree T of G to the unique acyclic ori-
entation with a unique sink at s belonging to the activity class of orientations associated
with T by the correspondence of Theorem6, is an activity-preserving bijection from the set
of internal spanning trees of G onto the set of acyclic orientations of G with a unique sink
at s.

Theorem 9 is a straightforward corollary of Theorem 6 and Proposition 8. Note that
given any spanning treeT in a graphG, and a vertexs, it is always possible—and easy—to
linearly order the edges ofG so thatT is the lexicographically smallest spanning tree and
is increasing with respect tos. Label the edges ofT by consecutive integers 1,2, . . . in
successive layers defined by their distance tos. After T has been labelled, label arbitrarily
the edges not inT.

The bijections provided by Theorem 9 are different from the Gebhard–Sagan bijec-
tions. We observe that these bijections are activity-preserving by construction, whereas
Gebbard–Sagan bijections are not in general. The orientation inFig. 1 of [9, p. 139]has
O∗-activity 2, but the spanning tree constructed by the algorithm has internal activity 3.

Fig. 3 illustrates Theorem 9 on the graphW4, already used inFigs. 1and2. The Tutte
polynomial ofW4 is

t (W4; x, y) = x4 + y4 + 4x3 + 4x2y + 4xy2 + 4y3 + 6x2

+ 9xy + 6y2 + 3x + 3y.

The graphW4 hast (W4; 1,0) = 14 internal spanning trees.
The lexicographically smallest spanning tree 1236 is increasing with respect to the NE

(north–east) vertex. For each acyclic orientation with unique sink at the NE vertex, we have
indicated the internal spanning treeT given by Theorem 9 (its edges are drawn in heavy
lines). We have also indicated the active partition. The internal activity is the number of
parts of the active partitions, and the active edges are the first element of each part. By
reversing all edge directions in arbitrarily chosen parts of the active partition, we get the
activity class associated withT. By Proposition 8, in each activity class exactly one acyclic
orientation has a unique sink at the NE vertex: this orientation is shown inFig. 3.

HenceFig. 3also illustrates the bijection from internal spanning trees to activity classes
of acyclic orientations (a restriction of the active correspondence) defined in Section 5.

Fig. 4 gives details of the construction of Section 5 for the spanning treeT = 1246.
The active partition is 134+ 25 + 678. The graphs of Theorem 6 areG1 = G\25 678,
G2 = G/134\678,G3 = G/12 345. The spanning trees with(1,0) activities being unique
in these very simple graphs one can check easily that we haveT1 = 14,T2 = 2,T3 = 6, and,
of course, 1246= 14+ 2 + 6.

7. Link with components obtained from linear vertex ordering

An enumeration of acyclic orientations with a unique sink in a graph, using the coefficients
of the chromatic polynomial, has been described by Lass[13], in relation with results by
Cartier, Foata, Gessel and Viennot[18]. We prove in this section that the decomposition of
an acyclic orientation with a unique sink intoV-components, constructed in[13] by means
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of a linear ordering of the vertices, is a particular case of the active partition of the present
paper, for some suitably defined linear ordering of the edges.

The following definitions and results are introduced in[13]. We say that a linear ordering
of V = v1 < · · ·<vr+1 reflects the connectivityof G if for all i, 1< i�r + 1, the vertexvi
is adjacent to at least one vertexvj with j < i.

Let
−→
G be an acyclic orientation ofGwith set of verticesV =v1 < · · ·<vr+1. We say that

w ∈ V is accessiblefrom v ∈ V if there exists a directed path fromv to w. LetW1 be the
set of vertices ofG accessible fromw1 = v1, and inductively, ifV \(W1 ∪ · · · ∪Wi−1) �= ∅,
let wi be the smallest vertex inV \(W1 ∪ · · · ∪ Wi−1) and letVi be the set of vertices in
V \(W1 ∪ · · · ∪ Wi−1) accessible fromwi . Then letk be the integer such thatV = (W1 +
· · · + Wk).

The setsW1, . . . ,Wk are called theV-componentsof
−→
G , andk is the number ofV-

components of
−→
G . Note as an example that, by definitions, the acyclic orientation ofG

defined by(vi, vj ) directed fromvj to vi whenvi < vj , has exactlyr + 1 V-components
V = {v1} + · · · + {vr+1}.

A central result in[13] is that, for a connected graphG = (V ,E) with a linear ordering
of V = v1 < · · ·<vr+1 reflecting the connectivity ofG, the coefficientti,0 is the number of
acyclic orientations ofG with unique sinkv1 with i + 1 V-components. This result can be
seen as a corollary of the next Proposition.

LetG= (V ,E) be a connected graph, with a linear ordering ofV =v1 < · · ·<vr+1 and a
linear ordering ofE.We say that these two linear orderings areconnectivity-tree-compatible,
or ct-compatiblefor short, if

(i) the linear ordering ofV reflects the connectivity ofG,
(ii) the minimal spanning treeT0 = b1 < · · ·<br of G with respect to the linear ordering

of E is increasing with respect tov1,
(iii) for all i, 1� i�r, bi = (vi+1, vj ) with vj < vi+1.

Note that the property (iii) can be replaced by
(iii ′) for all i, 1� i�r, the subgraph spanned by{v1, . . . , vi+1} is the subgraph spanned by

{b1, . . . , bi}.
Lemma 10. LetG = (V ,E) be a connected graph.

(i) for any linear ordering on V which reflects the connectivity of G, there exists a linear
ordering on E ct-compatible with this ordering.

(ii) for any linear ordering on E for which the minimal spanning treeT0 = b1 < · · ·<br
of G is increasing with respect to a vertexv, there exists one and only one linear ordering
on V ct-compatible with this ordering.

(iii) there exist ct-compatible linear orderings on V and E.

Proof. (i) We buildT0 by induction withb1 = (v1, v2) and, for 2� i�r, the edgebi in the
subgraph induced by{v1, v2, . . . , vi+1}, not in the subgraph induced by{v1, v2, . . . , vi}.
Then we order the edges inT0 by b1 <b2 < · · ·<br , and the edges inE\T0 arbitrarily with
e >br for e ∈ E\T0.

(ii) Necessarilyv = v1 is the smallest vertex, the second vertexv2 is the other vertex of
b1, and, for all 3� i�r + 1, the vertexvi such thatv1 < · · ·<vi is the vertex ofbi−1 not
previously defined.
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(iii) Obvious in view of (i), the existence of a linear ordering of the vertices reflecting the
connectivity being clear. �

Lemma 11. LetG= (V ,E) be a connected graph with ct-compatible linear orderings on
V and E. Then for any connected subgraph H of G induced byW ⊆ V , the minimal edge in
T0 which is not an edge of H has an extremity equal tomin(V \W).

Proof. Let bi be the minimal edge ofT0 = b1 < · · ·<br which is not an edge ofH. If
bi =b1 then the result is obvious. We assume nowi >1. LetG′ be the graph induced by the
connected component ofT0\bi containingb1. Let j be such that 1�j � i − 1. SinceT0 is
increasing with respect tov1, the edgebj is an edge ofG′, and sincebi is smallest not inH,
we havebj in H. Then, since the linear orderings are ct-compatible, the verticesv1, . . . , vi
are all vertices ofG′ andH. On the other handvi+1, an extremity ofbi by definition of
compatibility between orders, is not a vertex ofG′ norH sincebi is not an edge ofG′ and
since the linear ordering ofV reflects the connectivity ofG. Sovi+1 = min(V \W). �

Proposition 12. LetG= (V ,E) be a connected graph with ct-compatible linear orderings
on V and E. Let

−→
G be an acyclic orientation of G with unique sinkv1 = min(V ). Let

V = W1 + · · · + Wk be the partition of V into V-components, andE = A1 + · · · + Ai the
active partition of E, with respect to

−→
G (where the indices respect the linear ordering of

the parts in the definitions).
We havek = i + 1,W1 = {v1}, and for all j, 1�j � i, W1 + W2 + · · · + Wj+1 is the set

of vertices ofG(A1 + · · · + Aj).

Proof. FirstW1={v1} sincev1 is a sink. Leta1 < · · ·<ai be theO∗-active elements of
−→
G .

Let 1�j � i. We prove the assertion by induction onj: assume that it is true for allj ′ <j .
Let aj = (vh, v!) with vh < v!. It follows from the definition of the active partition that at
aj is the smallest edge ofT0 which is not an edge ofG(A1 + · · · + Aj−1). It follows from
the definition ofV-components and the induction hypothesis thatvh ∈ W1 + · · · + Wj−1.
By Lemma 11, we havev! = min(V \(W1 + · · · + Wj−1)). Hence by definition of the
V-components,v! = min(Wj ) = wj .

Let v be a vertex ofG(A1 +· · ·+Aj) with v /∈W1 +· · ·+Wj−1. By definition of active
partitions,

−→
G(A1 + · · · + Aj)/(A1 + · · · + Aj−1) has a unique sourcev! and unique sink

vh, so there exists a directed path in
−→
G from v! to v, sov ∈ Wj .

Conversely, letv ∈ Wj . There exists a directed path in
−→
G from v! = wj to v. On the

other hand, sincev1 is the unique sink of
−→
G , there exists a directed path fromv to v1. If v is

not a vertex ofG(A1 + · · · + Aj), sincev! andv1 are vertices ofG(A1 + · · · + Aj), these
paths induce a cycle in

−→
G/(A1 + · · · + Aj), but this is impossible sinceE\(A1 + · · · +

Aj) = Aj+1 + · · · + Ai is a union of directed cocycles of
−→
G and so

−→
G/(A1 + · · · + Aj)

is acyclic.
Since finallyW1 + W2 + · · · + Wj+1 is the set of vertices ofG(A1 + · · · + Aj) for all

1�j � i, it follows thatk = i + 1. �

This result states that for ct-compatible vertex and edge orderings the two constructions
have the same outcome. It is remarkable that originally their respective inductive definitions
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used reverse orders: the active partition is built from the greatest active element to the
smallest one, whereasV-components are built from the first vertex to the last one.

Consider the upper right orientation ofW4 in Fig. 3, for which the active decomposition is
shown inFig. 4. The ct-compatible linear ordering of the vertices isa <b<c<d <e with
a, b, c, d, e, respectively, the north–east, central, south–east, north–west and south–west
vertices. The active partition isE = 134+ 25 + 658, theV-components areV = {a} +
{b, d}+ {c}+ {e}. Indeed{a}=W1 is the unique sink,{a, b, d}=W1 +W2 are the vertices
ofG(134)=G(A1), {a, b, c, d}=W1+W2+W3 are the vertices ofG(12345)=G(A1+A2)

and of course{a, b, c, d, e}=W1 +W2 +W3 +W4 =V are the vertices ofG(12345678)=
G(A1 + A2 + A3) = G.

Finally, for ct-compatible linear orderings onV andE, an acyclic orientation
−→
G of G

with unique sinkv1 hask + 1 V-components if and only if
−→
G has dual activityk, thus

the partition of the set of acyclic orientations with a unique given sink—which produces
an enumeration with respect to the coefficients of the Tutte polynomial—is the same when
built fromV-components or from activity classes of orientations. However, the second point
of view, based on edges and duality instead of vertices, (1) extends to all orientations and
all linear orderings onE, (2) is related to a similar decomposition for spanning trees, and
(3) generalizes to hyperplane arrangements and oriented matroids.
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